Kinetics and Thermodynamics of Membrane Protein Folding
نویسندگان
چکیده
Understanding protein folding has been one of the great challenges in biochemistry and molecular biophysics. Over the past 50 years, many thermodynamic and kinetic studies have been performed addressing the stability of globular proteins. In comparison, advances in the membrane protein folding field lag far behind. Although membrane proteins constitute about a third of the proteins encoded in known genomes, stability studies on membrane proteins have been impaired due to experimental limitations. Furthermore, no systematic experimental strategies are available for folding these biomolecules in vitro. Common denaturing agents such as chaotropes usually do not work on helical membrane proteins, and ionic detergents have been successful denaturants only in few cases. Refolding a membrane protein seems to be a craftsman work, which is relatively straightforward for transmembrane β-barrel proteins but challenging for α-helical membrane proteins. Additional complexities emerge in multidomain membrane proteins, data interpretation being one of the most critical. In this review, we will describe some recent efforts in understanding the folding mechanism of membrane proteins that have been reversibly refolded allowing both thermodynamic and kinetic analysis. This information will be discussed in the context of current paradigms in the protein folding field.
منابع مشابه
Theoretical studies of protein-folding thermodynamics and kinetics.
Recently, protein-folding models have advanced to the point where folding simulations of protein-like chains of reasonable length (up to 125 amino acids) are feasible, and the major physical features of folding proteins, such as cooperativity in thermodynamics and nucleation mechanisms in kinetics, can be reproduced. This has allowed deep insight into the physical mechanism of folding, includin...
متن کاملRetinal binding during folding and assembly of the membrane protein bacteriorhodopsin.
The factors driving folding and assembly of integral membrane proteins are largely unknown. In order to determine the role that the retinal chromophore plays in assembly of bacteriorhodopsin, we have determined the kinetics and thermodynamics of retinal binding during regeneration of bacteriorhodopsin, from denatured apoprotein, in vitro. Regeneration is initiated by rapid, stopped-flow, mixing...
متن کاملProtein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions
Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...
متن کاملUnderstanding protein folding with energy landscape theory. Part II: Quantitative aspects.
5. Thermodynamics and kinetics of protein folding 234 5.1 A protein Hamiltonian with cooperative interactions 234 5.2 Variance of native contact energies 235 5.3 Thermodynamics of protein folding 236 5.4 Free-energy surfaces and dynamics for a Hamiltonian with pair-wise interactions 240 5.5 The effects of cooperativity on folding 242 5.6 Transition-state drift 242 5.7 Phase diagram for a model ...
متن کاملHow well can simulation predict protein folding kinetics and thermodynamics?
Simulation of protein folding has come a long way in five years. Notably, new quantitative comparisons with experiments for small, rapidly folding proteins have become possible. As the only way to validate simulation methodology, this achievement marks a significant advance. Here, we detail these recent achievements and ask whether simulations have indeed rendered quantitative predictions in se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014